# Correlations and fluctuations from lattice QCD

#### Claudia Ratti

Università degli Studi di Torino and INFN, Sezione di Torino

In collaboration with: S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, K. Szabó (Wuppertal-Budapest collaboration)

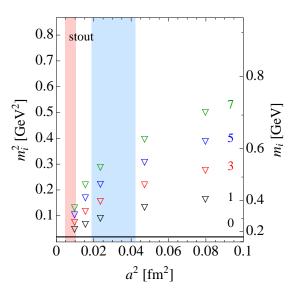
#### **Motivation**

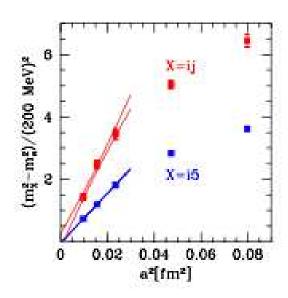
- The deconfined phase of QCD can be reached in the laboratory
- Need for unambiguous observables to identify the phase transition
  - fluctuations of conserved charges (baryon number, electric charge, strangeness)
    S. Jeon and V. Koch (2000), M. Asakawa, U. Heinz, B. Müller (2000)
- lacklash A rapid change of these observables in the vicinity of  $T_c$  provides an unambiguous signal for deconfinement
- ◆ These observables are sensitive to the microscopic structure of the matter
  - non-diagonal correlators give information about presence of bound states in the QGP
- They can be measured on the lattice as combinations of quark number susceptibilities

#### Choice of the action

no consensus: which action offers the most cost effective approach
Aoki, Fodor, Katz, Szabo, JHEP 0601, 089 (2006)

lacktriangle our choice tree-level  $O(a^2)$ -improved Symanzik gauge action


2-level (stout) smeared improved staggered fermions


$$V = P \left[ \longrightarrow + \rho \left( \longrightarrow + \longrightarrow + \bigcap + \bigcup \right) \right]$$

one of best known ways to improve on taste symmetry violation

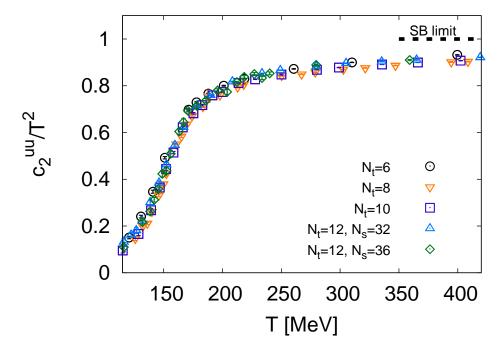
## Pseudo-scalar mesons in staggered formulation

- Staggered formulation: four degenerate quark flavors ('tastes') in the continuum limit
- \* Rooting procedure: replace fermion determinant in the partition function by its fourth root
- ♦ At finite lattice spacing the four tastes are not degenerate
  - each pion is split into 16
  - the sixteen pseudo-scalar mesons have unequal masses
  - only one of them has vanishing mass in the chiral limit





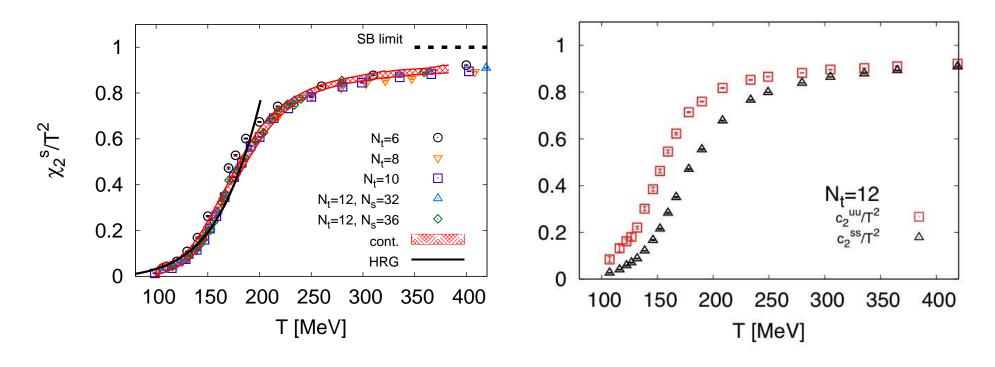
• Scaling starts for  $N_t \geq 8$ .


diagonal and non-diagonal

quark number susceptibilities

 $N_f=2+1$  dynamical quark flavors

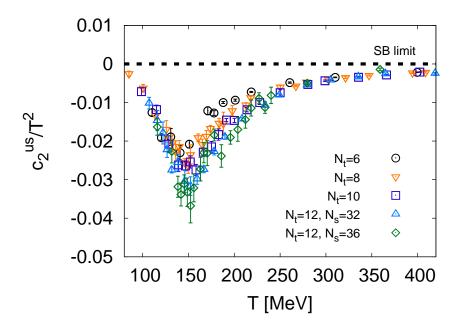
$$m_s/m_{u,d} = 28.15$$


## Results: light quark susceptibilities



- lacktriangle quark number susceptibilities exhibit a rapid rise close to  $T_c$
- $\spadesuit$  at large T they reach  $\sim 90\%$  of the ideal gas limit

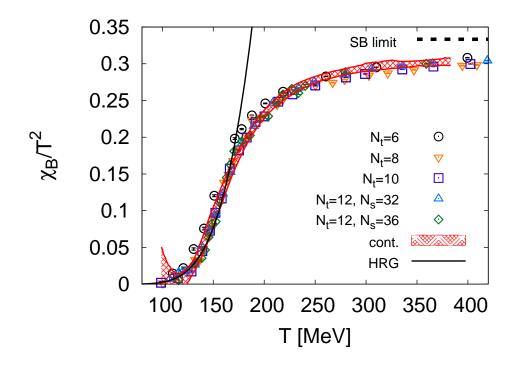
## Results: strange quark susceptibilities


$$\mathbf{c}_2^{ss} = \chi_2^s = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_s^2} \right|_{\mu_i = 0}$$



- strange quark susceptibilities have their rapid rise at larger temperatures compared to the light quark ones
- lacktriangle they rise more slowly as functions of T

## Results: nondiagonal susceptibilities


$$\mathbf{c}_2^{us} = c_2^{ds} = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_u \partial \mu_s} \right|_{\mu_i = 0}$$



- non-diagonal susceptibilities look at the linkage between different flavors
- in the hadronic phase they are non-zero
- lacktriangle they exhibit a strong dip in the vicinity of  $T_c$
- they vanish in the QGP phase at large temperatures

## Results: fluctuations of baryon number

$$\chi_B = \frac{1}{9} \left( 2c_2^{uu} + \chi_2^s + 2c_2^{ud} + 4c_2^{us} \right)$$



- lacktriangle rapid rise around  $T_c$
- lacktriangle It reaches  $\sim 90\%$  of ideal gas value at large temperatures

## Testing the presence of bound states in the QGP

- Simple QGP: strangeness is carried by strange quarks
  - Baryon number and strangeness are correlated
- Hadron gas: strangeness is carried mostly by mesons
  - → Baryon number and strangeness are uncorrelated
- ♦ Bound state QGP: strangeness is carried mostly by partonic bound states
  - → Baryon number and strangeness are uncorrelated

We define the following object

$$C_{BS} = -3 \frac{\langle BS \rangle}{\langle S^2 \rangle}$$

V. Koch, A. Majumder, J. Randrup, PRL95 (2005). E. Shuryak, I. Zahed, PRD70 (2004).

## Simple estimates

#### In a QGP phase:

$$\langle S^2 \rangle = \langle (n_{\bar{s}} - n_s)^2 \rangle$$

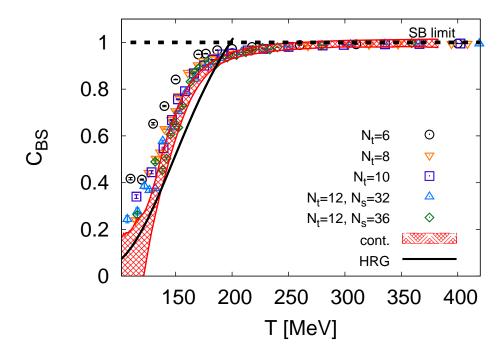
at all T and  $\mu$ 

$$C_{BS} = 1$$

#### In hadron gas phase:

 $C_{BS} = 0.66$ 

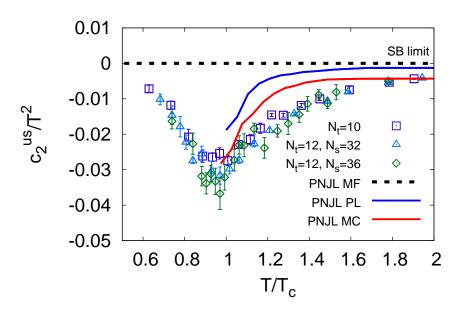
#### In bound state QGP:


- lacktriangle heavy quark, antiquark quasiparticle contribute both to  $\langle BS 
  angle$  and to  $\langle S^2 
  angle$
- lacktriangle bound states of the form sg or  $\overline{s}g$  contribute both to  $\langle BS 
  angle$  and to  $\langle S^2 
  angle$
- lacktriangle bound states of the form  $sar{q}$  or  $ar{s}q$  contribute only to  $\langle S^2 
  angle$

at 
$$T=1.5~T_c$$
 MeV and  $\mu=0$ 

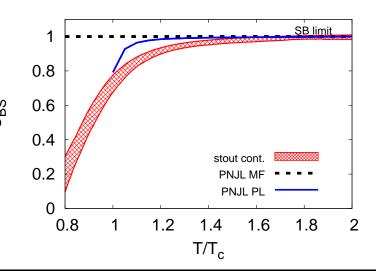
$$C_{BS} = 0.62$$

## Results: baryon-strangeness correlator

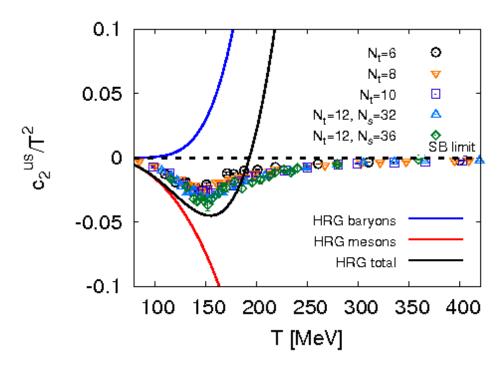

$$C_{BS} = 1 + \frac{c_2^{us} + c_2^{ds}}{\chi_2^s}$$



- $lacktriangledown C_{BS}$  indicates the possibility of bound states in a certain window above  $T_c$
- lacktriangle there is a window of about 100 MeV above the transition where  $C_{BS} < 1$


#### Recent work: are there bound states in the QGP?

◆ Comparison of lattice to PNJL (C.R., R. Bellwied, M. Cristoforetti, M. Barbaro, arXiv:1109.6243)




- PNJL MF: pure mean field calculation
- PNJL PL: mean field plus Polyakov loop fluctuations
- PNJL MC: full Monte Carlo result with all fluctuations taken into account
- lacktriangle the red curve falls on the blue for  $V o \infty$
- lacktriangle Even the inclusion of fluctuations is not enough to describe lattice data above  $T_c$

There seems to be space for a bound state contribution

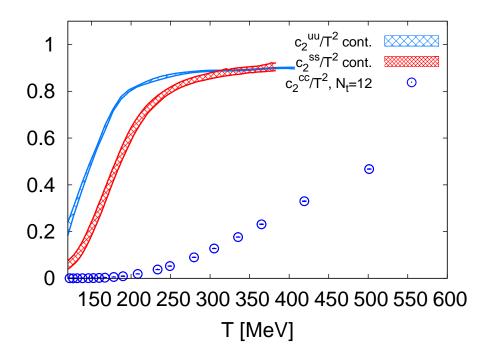


### Baryon-meson dependence in correlator



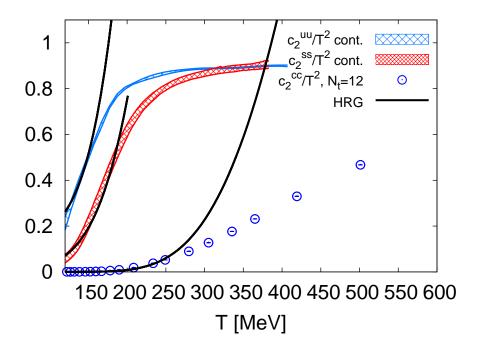
- lacktriangle Baryons dominate in HRG at T>190 MeV
- The lattice correlator never turns positive
  - ightharpoonup bound states above  $T_c$  are predominantly of mesonic nature
- lacktriangle The upswing in the lattice data shows that baryon contribution increases with T

C.R., R. Bellwied, M. Cristoforetti, M. Barbaro, arXiv:1109.6243


charm quark susceptibilities

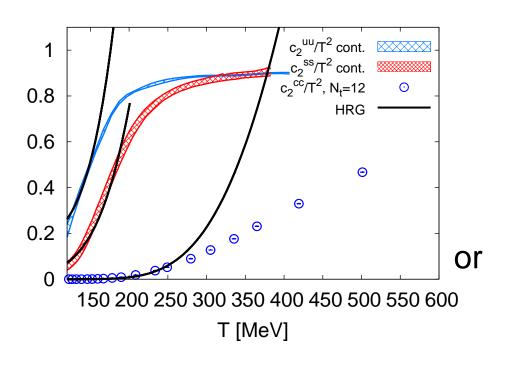
$$N_f = 2 + 1 + 1$$

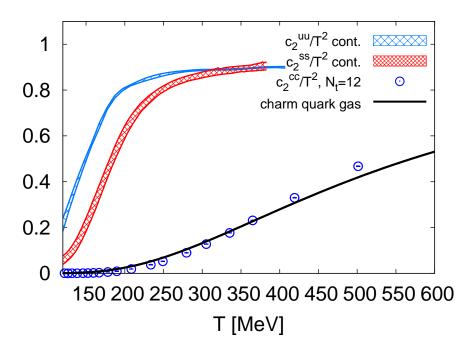
with partial quenched charm


$$m_c/m_s = 11.85$$

## Charm quark number susceptibilities




- charm susceptibilities rise at much larger temperatures compared to the light quark ones
- their rise with temperature is much slower


## Possible interpretations



- $\ensuremath{\spadesuit}$  survival of open charm hadrons up to  $T \simeq 2T_c$  ?
- HRG results agree with the lattice up to the inflection point in the data

### Possible interpretations





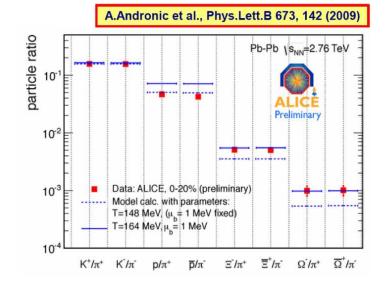
- lacktriangle survival of open charm hadrons up to  $T\simeq 2T_c$ ?
- HRG results agree with the lattice up to the inflection point in the data
- thermal excitation of charm quarks takes place at larger temperatures
- ideal gas of charm quarks agrees with lattice

need for non-diagonal quark number susceptibilities

#### Conclusions

- lacktriangle study of diagonal and non-diagonal quark number susceptibilities for  $N_f=2+1$  dynamical flavors
- diagonal quark number susceptibilities: signals of QCD phase transition
  - ightharpoonup rapid rise close to  $T_c$
  - ightharpoonup susceptibilities of different flavors show their rise at different T
- lacktriangle correlations between different flavors are large immediately above  $T_c$ 
  - possibility of bound states survival in the QGP
- diagonal charm quark susceptibilities rise at much larger temperatures
- they don't allow to distinguish between HRG and free charm gas
  - need for non-diagonal correlators

Backup slides

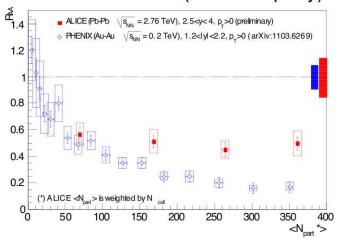

## There are evidences for deviations from statistical model predictions at the LHC

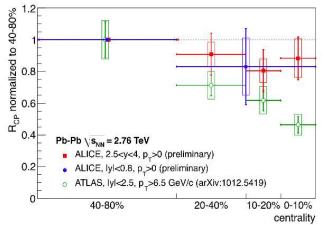
- baryon production -

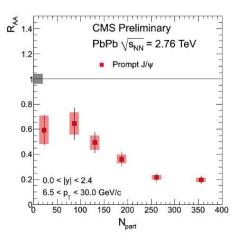
#### R. Preghenella, ALICE Collaboration, SQM 2011:

|                                       | ALICE data Pb-Pb √s <sub>NN</sub> = 2.6 TeV these results | LHC prediction*  T <sub>ch</sub> = 164 MeV, μ <sub>B</sub> =1 MeV  A.Andronic et al, Phys.Lett.B 673, 142 (2009) | LHC prediction*  Τ <sub>ch</sub> = (170 ± 5) MeV, μ <sub>B</sub> = (1 ± 4) MeV <u>J.Cleymans et al, PRC 74, 034903 (2006)</u> |
|---------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| <i>K</i> <sup>+</sup> /π <sup>+</sup> | 0.156 ± 0.012                                             | 0.164                                                                                                            | 0.180 ± 0.001                                                                                                                 |
| <i>K</i> -/π                          | 0.154 ± 0.012                                             | 0.163                                                                                                            | 0.179 ± 0.001                                                                                                                 |
| <i>p</i> /π <sup>+</sup>              | 0.0454 ± 0.0036                                           | 0.072                                                                                                            | 0.091 ± 0.009                                                                                                                 |
| <i>p/π</i> <sup>-</sup>               | 0.0458 ± 0.0036                                           | 0.071                                                                                                            | 0.091 ± 0.009                                                                                                                 |

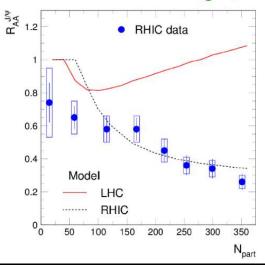
\* prediction for central Pb-Pb collisions at  $\sqrt{s_{NL}}$  = 5.5 TeV





Conclusion: possibly no common freeze-out surface for all particle species?


## There are evidences for deviations from statistical model predictions at the LHC

- J/ψ production -

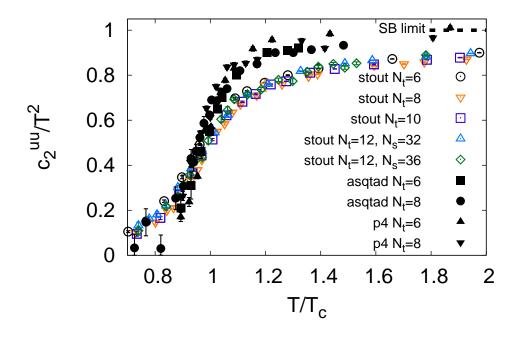

Data: ALICE/ PHENIX (forward rapidity) - QM 2011 Data: ALICE / ATLAS / CMS (mid rapidity) - QM 2011







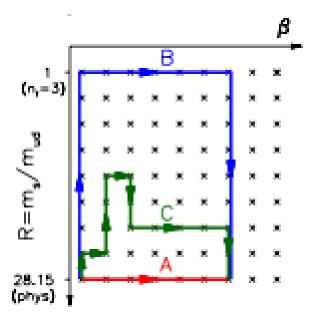
Prediction: Braun-Munzinger, Stachel arXiv:0901.2500




#### Conclusion:

All datasets (forward and mid-rapidity, low and high pT) show significant  $J/\psi$  suppression in central collisions in contradiction to statistical model predictions: possibly no common freeze-out surface or no strong partonic recombination?

## Comparison with previous lattice data


$$\mathbf{c}_2^{uu} = \left. rac{T}{V} rac{\partial^2 \ln Z}{\partial \mu_u \partial \mu_u} 
ight|_{\mu_i = 0}$$



- ightharpoonup physical quark masses  $m_s/m_{u,d}=28.15$
- finer lattice spacings approaching the continuum
- the phase transition turns out to be much smoother

## All path approach

- Our goal:
  - determine the equation of state for several pion masses
  - reduce the uncertainty related to the choice of  $\beta^0$



- conventional path: A, though B, C or any other paths are possible
- generalize: take all paths into account

#### Finite volume and discretization effects



- lacktriangle finite  $V:N_s/N_t=3$  and 6 (8 times larger volume): no sizable difference
- ♦ finite a: improvement program of lattice QCD (action observables)
  - ightharpoonup tree-level improvement for p (thermodynamic relations fix the others)
  - race anomaly for three T-s: high T, transition T, low T
  - continuum limit  $N_t=6,8,10,12$ : same with or without improvement
- lacktriangle improvement strongly reduces cutoff effects: slope $\simeq 0$  (1  $-2\sigma$  level)